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Crystallization of a polydisperse system of crystals in the case of continuous organization of the process in 

a cascade of crystallizers is investigated. The process is assumed to occur in a kinetic regime. The influence 

of fluctuations in the rate of crystal growth is taken into consideration. Bas~  computational formulas are 

obtained and certain limiting situations are analyzed. 

Introduction. Any technological process being carried out always raises a question concerning its best 

organization, with different meanings being attached to the notion of optimality. So, the process is often considered 

to be optimum if: I) the productivity, i.e., the production of a given amount of a target product in a minimum time 

is at the maximum; 2) the minimum unit cost is ensured; 3) the products put out have the best criteria of any of 

the parameters, etc. It is not unusual that several requirements can be imposed simultaneously on the characteristics 

of the process. And it often turns out that they (or some of them) contradict (exclude) each other; therefore, the 

formulation of what is meant by optimum organization of a process is frequently the subject of research by itself 

[11. 

As regards the process of mass crystallization, it can be noted that its mathematical simulation is being 

intensely developed at the present time along the lines of the solution and analysis of more complex equations as 

well as in the direction of studying the influence of new effects (coagulation, recycle, stability, self-oscillations, 

etc.) [2-8 ]. In these cases the problems of the optimization of crystallization are left almost untouched and 

constitute only a minute fraction in the total number of relevant publications. It may be mentioned that the basic 

problems of the optimization of the crystallization process with different requirements on optimality are described 

in the fourth chapter of the monograph [7 ]. Some of the problems, methods of analysis, and discussion of optimum 

organization of mass crystallization are presented in [9-12 ]. Below, as a criterion of optimality we take a problem 

of determining the process parameters that ensure the least spread (closeness to monodispersity) in the sizes of 

particles with respect to the prescribed mean size. The characteristic of the "spread" will be understood to represent 

the standard deviation (dispersion) [7 ], although other criteria are also suited for this purpose (see, for example, 

[9 ]). The process of crystallization will be considered in a cascade of apparatuses. 

Statement of the Problem. In addition to the aforegoing, we will assume that: 1) crystals grow in a kinetic 

regime, i.e., the rate of the growth of crystals is independent of their sizes; 2) the influence of fluctuations in the 

rate of crystal growth is taken into account; 3) the process is isothermal; 4) the process is stationary, i.e., all 

transient phenomena are over; 5) the stationary regime is considered to be stable, i.e., there are no self-oscillations; 
6) the crystal is taken to be of spherical shape, i.e., it is characterized only by one parameter - its equivalent 
radius. 

A 

Under these conditions, a system of equations for the crystal size distribution function fj will be written in 
the form 

^ d~]2/dr z) ^ ^ uj  ( 2 d r ~ d r  - D = lfj_~ (r) - 4 ( 0  l /Oj ,  (1) 
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] = 1, 2 . . . . .  N is the number of the apparatus. 

We assume that the magnitude of the distribution function at the inlet to the first crystallizer ~0(r) is equal 

to zero and that crystals nucleate only in the first apparatus, as given by the boundary condition 

U] (2.f/- O d f J d r )  lr=O = J a i l ,  j = l,  2, ..., N ,  (2) 

where 6ii is the Kronecker symbol (6i] = l at i = ] and 6ii = 0 with i ;e l); U/is  half of the crystal growth rate value 

(to simplify the representation of subsequent expressions, a value that is not the entire rate is taken). One other 
A 

condition specifies the tending of the functions .fy to zero when r --, ~. From Eq. (2) we see that the coefficient of 

the crystal  growth rate fluctuation is expressed by the approved [13, 14] dependence (the growth rate 

proportionality with the proportionality coefficient D/2) .  

It is worthwhile to analyze problem (1), (2) in dimensionless form; for this purpose, we will introduce new 
variables and parameters: 

A 

/j =//D/(J01), ~/= D/(Ufl/), y = r /O,  (3) 

in which relations (I) and (2) will he rewitten as follows: 

2 d f y / d y  - d f j 2 / d y  2 = to] [fy_ 1 (Y) - .f] (Y) 1, 

( 2 / / -  d fy /dy )  l y=0 = Xl3il , ] = 1, 2 . . . . .  N .  

(4) 

Solution of the Equations for the Crystallization Problem. Analysis of a problem of type (4) in the absence 

of terms that correspond to the influence of fluctuations of the crystal growth rate is traditionally carried out [7, 

15] by operator methods, the most convenient of which is the Laplace transform applied directly. In our case, there 

is also an integral transformation convenient for seeking a solution of the problem, namely, the so-called generalized 

Fourier transform, whose direct and inverse formulas have the form [16 ]: 

f " (v) = f / (y) Z (y, v) dy f(y)=2 f. (v) Z (y, v) dv 
' 2 

0 ~ 0 l + v  

(5) 

where Z(y, v) = sin (yv) + v cos (yv); the starred quantities are those that were transformed according to the first 

formula in (5). Before applying direct transformation (5), it is necessary to pass to new desired functions by the 

formulas fy(y) = exp (y)gi(y), ] --- 1, 2 . . . . .  N in order to impart a "self-conjugate" form to system (4). As a result, 

instead of Eq. (4), we have 

gj - d g 2 / d y  2 = tc.i [gj-1 (Y) - gl (y)  l ,  

(gj - d g i / d Y )  l y=0 = tCl6./l , J = 1, 2 . . . . .  N .  
(6) 

The application of direct transformation (5) to problem (6) yields 

g~ 0') (1 + ,cj + ,z)  = ,cjg~_l 0') + v , q a : ,  (7) 

From this we find 

y =  1, 2, ..., N.  

g7 0') = 1, 1:] x/, /(1 + ,c k + vz) .  (8) 
k = l  
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The analytical form of inversion (8) depends on whether or not any parameters r] coincide at different 

indices. First, we will write out the results in the case when all the parameters x / a re  different. The variants in 

which any of the indices coincide can often be easily obtained by means of the corresponding passage to the limit. 

Dividing expression (8) into partial fractions, we have 

g; ( v ) = v  ~ rkR{/(1 + r  k + v 2 ) ,  / (~=  l/I x s / ( x s - r  ~ ,  
k=l  s=l 

s#k  

1 
R l = 1. (9) 

Now, having noted that using the tables of [17] it is easy to find the integral 

K1 (y, fl) = 2 7 vZ (y, v) dv = exp ( -  ~ )  , (10) 
0 (1 + r  +v2) (1  + v  2) 1 + f l  

in which fl = (1 + r)1/2, we apply inversion formula (5) and obtain the desired solution of the problem 

~ exPl (-+ y ~ )  (11) --fi (Y) = exp (y) x ~'n/c , j = 1, 2 . . . . .  N .  
k=l 

When j = N, using relation (11) we determine the moments MiN of function -:N(Y) of an arbitrary order i: 

. N . 

0 k=l 

which can be used in the optimization problem. It should be noted that the moments of the crystal size distribution 

function reflect important characteristics of an aggregate of crystals. Thus, the zero moment is associated with the 

number of crystals, the first moment is associated with the mean size of crystals, the second - with the surface 

area, and the third - with the total (or mean) volume of crystals. 
Of the numerous cases of coincidence of ry for different indices j, we need only the variant in which all r j  

coincide, i.e., x i = x = const(/). It is evident from expression (8) that the inversion formula will have the factor (1 

+ x + v 2) to the power j. This will require generalization of integral (10). Note that, the desired integrals can be 

obtained, in particular, from Eq. (10) by differentiating both sides of formula (10) with respect to x and allowing 

for the corresponding factor and sign (minus for an odd number of differentiations and plus for an even one). A 

detailed calculation (which is omitted) results in the following expression: 

KN+ 1 (Y, fl) = 2 ~ vZ (y, v) dv = ~ exp ( -  fly) 
Jr 0 (1 + v 2) (f12 + v2)N+l 2~2N+1 

(U + k) ! 
l X 

k--0 ( N - k ) ! k !  

�9 . ( l a )  

x 2k (1 +fl)  j=0 J!  k=o k ! 2  k 1 +fl  

Thus, in this case the solution of the problem will be as follows 

f/(y) = ~ exp (y)/(7] (y, fl), j = 1, 2, ..., N .  (14) 

Selection of Optimum Values of the Parameters in the Solution Obtained. Let us now pass to the 
optimization problem. According to the foregoing, as a criterion of optimality (estimation of the homogeneity of 

crystal composition), we selected a requirement for attaining the minimum value of crystal size dispersion square 

in the last apparatus relative to the mean size 
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2 ( y  - y.)2/N (y) dy, Gr 

0 

where y. = MIMON is the prescribed mean size of crystals. Using the notation introduced, the formula for the 
dispersion square can be transformed as 

2 1 2 
= _ _  

Since we have a single restriction on the parameters: M~ -- y.A~ N (i.e., a problem in conditional extremum), we 
introduce the auxiliary Lagrange function 

2 

where)l is the Lagrangian multiplier. From this it is clear that in a general case we must determine the first three 
moments of the function/N(Y). 

The basic problem is the determination of the parameters xj proceeding from the requirements of the 

optimum conditions. Therefore, attention should be given to the fact that by virtue of their definition and the known 

facts [7 ], these parameters depend on the supersaturation of the solution, temperature, and the mean residence 

time of crystals in the apparatus. For example, for the growth rate Uj the following formula was obtained [7 ]: Uj 

= A. cme7 exp ( - E / R T j ) ,  where A, m, n are constants, E is the activation energy, C is the supersaturation, e! is 

the power required for agitation, which can also be used for the regulation of rj, and Tj is the temperature. 

Since the parameters xj enter identically (symmetrically) into formulas (12) for M/N, we see that the 

"constant" solution xi= x = coast(/) satisfies the system of equations used for determining the optimum parameters 

obtained by differentiation of the function ~ with respect to all parameters rj and equating the derivatives to zero: 

The value of x itself can be determined from the superimposed relation: M~r -- y.MON . Thus, in order to establish 

the functional dependence between the optimum value of x and mean size of crystals y., it is necessary to calculate 

the zero and first moments of the function/M(Y), determined by formula (14) at j = N. 

It should be noted that usually in problems concerning the extremum of a2-type functions, the solution 

obtained gives a minimum, although, strictly speaking, this fact needs verification. Generally such verification can 

turn out to be nontrivial; therefore, for the most part, research workers rely on "physical considerations" and 

particular cases in which elucidation of the type of extremum involves no difficulties. Here we will not investigate 

the character of the extremum of the function @. 

Formulas for the moments of the distribution function/N(Y) ~ most easily obtained after constructing a 

system of equations for moments, as is often done in practice, although they can also be found from relation (I 2) 

after passage to the limit. Upon integrating Eq. (4) over y in the limits (0, oo), we obtain 

- j = 1, 2 . . . . .  N ,  ( 1 5 )  

whence, allowing for the fact that M~0 -- 0 and for the properties of the Kronecker symbols, we find: M~j = const(j) 

= l, j >_ 1. Thus, the zero moments are determined. Now, we multiply Eq. (4) by y and again integrate over y in 

the limits (0, oo). As a result we have 

Summing up all Eqs. (16) and performing certain calculations, we obtain 
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N 
1 xM-Iq= 2N + • ,tO= 2N +x/2_xN+IFN(x) ,  (17) 

j=l 

where 

F N (,c) = 2_ v2d  
zr 0 (1 + t o + v 2 )  N(1 +v 2 )  2" 

For  the summation of the quantities 4 '  we will avail ourselves of the well-known formula for the sum of a 

geometric progression [17 ]. In this case the value of ~ was represented by the inverse integral expansion (5) at y 

= 0 for our  variant  x] = x, and formula (8) was used. The  integral F,v(r) can be calculated by differentiating the 

expression for FI (x) = 1 / (2x)  - [(1 + x) 1/2 - 1 ]/r 2 with respect to the parameter  x (F 1 (r) is found directly): 

FN = ( -  l )N- ldv-I  
(N - 1) ! d x  N-I  FI (x ) .  

The  calculation leads to the following formula for the function F,v(x): 

F N (x) = N+t + - -  + (1 + K) 1/2 I (N k) (2k 3) iv k 

tc 2 k=o k !. 2 k ' 

where(2k + 1)It = 1 . 3 . 5 .  ,.. , (2k + 1) and it is assumed by definition that ( - 3 ) ! !  = - 1  and ( -1 ) I I  = 1, Relation 

(18) allows one to write the expression for M~ in final form as 

It might appear  that the function FN(r) has a singularity when x --, 0, but the Taylor  expansion of this function in 

the vicinity of zero 

F N(x) = 2N+l ( N -  1)!  k = 0 ( N + k ) ( N + k +  1) k !  

indicates the boundedness  of the function FN(tO at the given point. Series (20) has a convergence radius equal to 

unity.  The  case x-- ,  0 corresponds to a small influence of the crystal growth rate fluctuations [see Eq. (3)].  

Confining ourselves to one term of the series, we obtain from Eq. (17) the following approximation of the function 

M~r in the vicinity of zero: 

rM~ [rN+l .. [2N+l = 2 N + ~ c / 2 -  ( 2 N -  1) vv]/ ( N +  1) I ] ,  r - , 0 .  (21) 

From this we see that  formula (20) turns out to be especially useful at large values of N and ra ther  small values 

of x, because the effect of x exerted on the result and associated with the function FN(r), begins from the term of 

the order  of xN+l,  which has certain advantages over dependence (19) in spite of the fact that Eq. (19) is a finite 

expression, while Eq. (20) is a sum of an infinite series. 

Of particular interest  is also the opposite limiting case ~ -,  oo. If we make use of a finite sum 

N- t  (N - k) (2k - 3 ) "  (2N - 1) !! (22) 

2k "'=N--2_N_I(N 1)~' 
k = l  k !  �9 - �9 

we obtain from formula (19) the following asymptotic dependence for M~ 
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Fig. 1. Lines of optimum connection between the dimensionless parameters  at 

different values of N: 1) N = 1 (it is also the asymptotic line for e --- 0 and 

any  value of N): 2) 3, 3) 4, 4) 5, limiting asymptotic line for e --, oo and 
N ..-~ oo. 

X M I N = N +  ( 2 N -  1)! !  (1 + x )  1 /2 ,  x--" ~o. (23) 
2 N - l  ( N -  1) ! 

To calculate the sum (22), we used the well-known [ 17] formula 

( 2 k - 3 ) ! !  1 7 dv 
= - - . ,  v2)k, k = 1, 2, 3 . . . . .  

--  1) l." 2 k :t 0 (1 + (k 

and performed summation under  the integral sign, etc. The relation between the parameter  x and the mean size 

of particles is given by the equation M 1 -- y.MON, from which the basic formula follows: 

xy. = 2N + ic/2 - K N + I F N  (K) .  
(24) 

First of all we note that according to Eq. (3) in the optimum regime the condition xj = x = const(j) leads 

to equality of the products of the residence time and the crystal growth rate in each apparatus of the cascade: 

Uj 0j = p = const (1)- (25) 

Herep has the dimensionali ty of length, whereas physically the parameter  tr = D/p is the ratio of two lengths, i.e., 

it characterizes the relative role of crystal-growth-rate fluctuations and size p,  which corresponds to the scale of 

the crystals grown in the apparatus. Relation (25) shows that, as required, it is possible to change Uj or Oj in a 

specific apparatus,  but so that the product of these parameters remains constant and equal to p. Our s ta tement  of 

the problem assumes that the crystal mean size r .  is known or, according to Eq. (3), in dimensionless form y. = 

r . / D  = MIN/MON, while the parameter  x (which is equivalent to p) is the desired characteristic. However, we note 

that in formula (24) p ,  ra ther  than D, plays the role of a natural scale for the crystal mean size, since xy. = r , /p .  

This is especially significant when D/p --, 0 (which is often the case), i.e., when the parameter  r is a small quantity. 

Of course, on passing to the fluctuationless case of x --, 0, the size should be scaled by the parameter  p. In this 

connection, it may be useful to consider formula (24) as the relationship between parameters  m = r . /p  and e = 

D/r .  for determining the parameter  p. Just as in the first case of the functional relationship between y. and x, in 

the variant noted we have in essense inverse functions. This is relation (24), which gives an explicit dependence 

of y. on x, as well as the following equation 

m = 2N + era~2 - ( e r a )  N + I  F N (era) , (2o) 
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which follows from Eq. (24). Here, in performing tabulation, we can first assign the product em, then determine 

the value of m from Eq. (26) and then, having divided the assigned value of em by m, we obtain the value of e, 

i.e., we virtually couple the parameters m and e. When N = 1 and N = 2, we easily obtain analytical dependences 

between the parameters: 

m = 2 + e or p = r . / ( 2  + D / r , )  (N  = 1) , 

m = [9e 2 + 16e - 4 + (81e 4 + 288e 3 + 312e 2 + 128e + 16)1/2]/(8e) (N = 2).  

(27) 

The corresponding graphs for the values N = 3, 4, 5 are given in Fig. 1. Useful information, including that obtained 

on the graphical representation of the dependences m = me, is given by the following asymptotic formulas: 

(28) 
m / ( 2 N )  = 1 + e / 2  , (e --, O) ; 

m 1 +  e ( ( 2 N - 1 )  t t ) 2  
_ . _  " , ( , - ,  

2N 2N 2 a - I  ( N -  1)! 

The factor in front of e, which depends on N in the second formula of Eq. (28), changes from 1/2 at N = I [see 

the first formula in Eq. (27) ] to the limiting value 2/:r - 0.636620, for N --, oo, obtained from the Stifling formula. 

When e --- 0, the tangent of the slope of the straight line (the first equation of (28)) is also equal to 1/2. From this 
it is seen (confirmed by the graphs and formulas (27)) that the curves m = re(e) in the coordinates m / ( 2 N )  and e 

tend to occupy a rather narrow sector with rays, whose tangents of the slope are equal to 1/2 and 2/3r. 

N O T A T I O N  
, I x  

C, supersaturation of solution; D, coefficient of crystal growth rate fluctuations; ~, fy, functions of crystal 

size distribution in j-th apparatus, dimensional and dimensionless, respectively; FN(r ), function determined by 
formula (17); gj(y) -- exp ( -y ) ,  fj(y), new desired functions; J, nucleation rate in 1st crystallizer; M/N , moments of 

function f,~,(y) of order i; N, number of crystallizers; Q, volumetric flow rate of liquid through system; r, crystal 

radius; Vj, volume of p th  apparatus; y = r / D ,  dimensionless crystal radius; y. ~- M~/M~ mean size of crystals; fl 
-- (1 + x)1/2; 0 2, square of the dispersion of crystal sizes in last apparatus of cascade; (I), Lagrange function; xj = 

D/(Uj.Oj); v, parameter of integral transformation (5); p, scale of grown crystals; Oj = Vj/Q, mean resistance time 

of particles in j-th apparatus. 
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